Method Detection Limit (MDL) Development and Standardization

2009 National Ambient Air Monitoring Conference Nashville, TN November 4, 2009

Overview

□ We're all using

40 CFR APPENDIX B TO PART 136 —
DEFINITION AND PROCEDURE FOR
THE DETERMINATION OF THE
METHOD DETECTION LIMIT—
REVISION 1.11

Method Detection Limit Definition

"The method detection limit (MDL) is defined as the minimum concentration of a substance that can be measured and reported with 99% confidence that the analyte concentration is greater than zero and is determined from analysis of a sample in a given matrix containing the analyte."*

Method Detection Limit Working Definition

- Statistically calculated concentration where you would expect to "qualitatively" identify the target analyte
- Measure of how well you can repeat an analysis
- Function of the ability to prepare identical low concentration samples.

Practical MDL Determination

- □ Your MDL is a measure of YOUR laboratory's sensitivity using YOUR chemicals, equipment, and staff.
- If you spike at your MDL concentrations you should find:
 - 50% of the values would fall above the MDL (detected)
 - □ 50% would fall below (not detected)

MDL Basics

- 1. Analytical systems (Instruments)
 - Run on systems that are operating properly
 - Calibration meets criteria
 - Columns in good condition
 - Avoid contaminate carry-over from previous samples
 - Blank samples meet criteria
 - Routine maintenance is complete

MDL Basics, Continued

2. Calibrating for the MDL procedure

- MDL studies are typically done at the beginning of a season or new year.
- Generate a new calibration curve prior to analyzing the MDL samples.
- Calibrate using the same calibration range used for field samples
- Verify calibration curve with second source standard

MDL Basics Procedures to Improve the MDL

Choosing the proper spike level!

- Prepare standard 2.5 to 5 times the estimated detection limit. (MDL is a function of the spike concentration!)
- Analyze at least seven (7) samples at the spike level, calculate the MDL
 - Accept the MDL if the calculated value is less than the spiked value.
 - Reprepare at a lower level and rerun the seven set series if calculated MDL is greater than 5 times the spiked level

Calculated MDL < Spike Level < 5 x Calculated MDL

Procedures to Improve the MDL, Continued

- 4. Replicate sample preparation
 - Method requires at least 7 replicates ERG recommends 10
 - Ensures the minimum number (seven) of replicates are met in the event of outliers, which should only include:
 - Obvious analyst error
 - Improper sample preparation
 - □ Reject entire outlier sample data set
 - Use the correct Student's T value for the number of replicates (n-1 degrees of freedom)

Procedures to Improve the MDL, Continued

5. Analyzing blanks

- Analyze at least one method blank to measure background contaminations
- Minimizing the blank helps control the variation (precision) of the MDL replicate runs
 - With the exception of metals, blank subtraction is not allowed for MDL determination.

Calculations to Determine MDL

Three important things to remember about calculating MDLs are:

- □ Use the sample standard deviation,
- □ Use the correct Student's t-value, and
- □ Use correct significant figures

Calculation 40 CFR Appendix B part 136

Number of replicates	Degrees of Freedom (n-1)	t _(cn-1,.99)
7	6	3.143
8	7	2.998
9	8	2.896
10	9	2.821

Example

MDL=2.821 (S_{pooled}) where 2.821 is equal to t(10,1- α =.99)

MDL Verification

- Analyzing a single sample spiked at the MDL concentration
 - If the analytical response is NOT distinguishable from a reagent blank, the calculated MDL is unreasonably low
 - This could happen if you make exact replicate samples and your system is inherently noise free.
 - □ The MDL study should be repeated at a different concentration. (Higher or Lower?)
 - □ If the analyte is detected at the presumed MDL, the MDL is defensible and should be reported

MDL Issues: What Affects Precision

- Background interferences and Blank contamination are variable and raise MDL spike
- Precision of standards preparation equipment (volumetric glassware, gas metering equipment, syringes etc) is variable
- Physically unable to produce a low enough standard to perform MDL study
- □ Instrument noise
- □ Others?

MDL Issues: What Affects TO-15 Precision

- VOC concentrator performance
- □ Different behavior of polar vs. nonpolar TO-15 compounds
- □ Variation in canister manufacture, use, or age
- Precision of standards preparation (mass flow controllers, etc)
- Ability to make standards concentration low enough to perform MDL study
- □ Others?

Spike Sample Preparation for Canisters (TO-15)

Static Dilution

 Spike the canister with a mixture of liquid components prepared in static dilution bottles

Dynamic Dilution

 Mix standards and humidified zero air with mass flow controllers and a calibration manifold

Better precision and lower detection possible with dynamic dilution spike preparation.

MDL Issues: What Affects Carbonyl Precision

- Background and blank contamination:
 Interferences from DNPH cartridges are variable and raise MDL
- Precision of standards preparation equipment (volumetric glassware, syringes, etc)
- Carbonyl extraction technique
- Others?

Spike Sample Preparation for Carbonyls (TO-11A)

- Vendor prepared stock solution
- Prequalified cartridge blank Lot
- High quality solvents
- Class A glassware
- Gas tight syringes
- Repeatable spiking technique

MDL Issues: What Affects Metal Precision

- For determination of Quartz filters that have a high background:
 - □ Analyze to initially determine which elements have background interferences
 - Spike filters and determine the MDL using standard procedures for elements w/o background
 - Analyze 7-10 non-spiked filters to determine MDL for filters that have high background

IO-3.5 MDL Example

Analyte	Average Quartz Filter (ng/strip)	
Antimony	6.4	
Arsenic	11.5	
Beryllium	4.1	
Cadmium	23.3	
Chromium	408	
Cobalt	6.0	
Lead	77.7	
Manganese	93.3	
Mercury	11.7	
Nickel	43.6	
Selenium	10.7	

IO-3.5 MDL Example (cont.)

Analysta	Average Blank Quartz Filter	Spiked Amount	MDL (na/otrin)
Analyte	(ng/strip)	Amount	(ng/strip)
Chromium	408	BLANK	76.2
Nickel	43.6	BLANK	29.4

Analyzed a spike concentration at 25 and 75 ng to verify MDL concentration.

Summary Improving MDLs

- Control variation in spike sample preparation
- Control background as much as possible
- Control instrument performance
- Improve sensitivity of analysis
 - Larger injections
 - Concentrate samples
 - Sensitive detectors (e.g., Full Scan vs. SIM MS)

MDL Common Sense Check

- □ Does the spike level exceed 5 times the MDL? If so, the spike level is high.
- □ Is the MDL higher than the spike level? If so, the spike level is too low.
- □ Are the replicate recoveries reasonable?

MDL Final Check

□ Does the calculated MDL meet the objectives for your program?

Contact Information

Julie Swift

Eastern Research Group

Julie.swift@erg.com

919-468-7924

